
DRAFT Philip Budne
Shiva Corporation

July 1993

KIP AppleTalk/IP Gateway Functionality

$Revision: 1.33 $
July 7, 1993

1. Status of this Memo

This DRAFT documents the functionality of the Stanford ‘‘KIP’’ AppleTalk/IP
‘‘Gateway’’ (also called the ‘‘SEAGate code’’, ‘‘IP-Ether/AppleTalk Gateway’’, or
‘‘Croft Gateway’’).

This draft document will be submitted to the RFC editor as an Informational
Document.

This document is an Internet Draft. Internet Drafts are working documents of the
Internet Engineering Task Force (IETF), its Areas, and its Working Groups. Note that
other groups may also distribute working documents as Internet Drafts.

Internet Drafts are draft documents valid for a maximum of six months. Internet
Drafts may be updated, replaced, or obsoleted by other documents at any time. It is
not appropriate to use Internet Drafts as reference material or to cite them other than
as a ‘‘working draft’’ or ‘‘work in progress’’.

Please check the I-D abstract listing contained in each Internet Draft directory to
learn the current status of this or any other Internet Draft.

This document expires December 31, 1993. Distribution of this memo is unlimited.

This memo was started as an effort to describe ‘‘IPTalk’’ for the AppleTalk-IP
Working Group of the Internet Engineering Task Force (IETF). It became apparent
that since no protocol standard or description existed that implementation specific
information was unavoidable. KIP is the prototypical AppleTalk/IP Gateway
implementation and is available in source form. KIP’s functionality forms the basis for
many commercial products available today.

DRAFT KIP AppleTalk/IP Gateway July 1993

2. History

Following the introduction of the Macintosh computer in 1984, Apple donated many
units to universities where Ethernet and TCP/IP were the primary networking
technologies. The Macintosh had clear advantages for text processing applications,
including an easy to use user interface, bit-mapped display, and a built-in network
adaptor for the sharing of laser printers. However, it was equally clear that the
absence of connectivity to existing large computing systems was a serious limitation.
Work began at several large universities (notably Dartmouth, Stanford and CMU) to
provide gateways and client software.

The original ‘‘Stanford Ethernet Applebus Gateway’’ was created at Stanford
University in 1985 by Bill Croft and was known as the ‘‘SEAGate’’. The hardware
consisted of off-the-shelf Multibus components; a ‘‘SUN 1’’ 68000 CPU card, an
Interlan NI3210 Ethernet card, and a simple homebrew Zilog 8530 SCC based
‘‘AppleBus’’ interface. The SEAGate source code and hardware documents were
freely available to members of the Internet community. The initial version provided
simple transport of encapsulated IP datagrams from AppleTalk-based Macintosh
computers to Ethernet based IP hosts. Later versions added encapsulation of
AppleTalk in IP and full AppleTalk routing capabilities. The SEAGate was configured
by editing include files compiled into the gateway code, and was downloaded over a
serial port on the CPU card.

The Kinetics FastPath was created using this technology in mid-1985 and consisted
of a 10Mhz 68008 with 48K of battery backed SRAM, an i82586 and a Zilog 8530
SCC. A PROM provided for download over LocalTalk and a library of buffer
management and LocalTalk I/O routines for use by the downloaded application.

The SEAGate code was ported to the FastPath and continued to evolve, and was
renamed ‘‘KIP’’ for the ‘‘Kinetics IP’’ Gateway. The name ‘‘KIP’’ is used in this
document only in reference to the gateway software. Unless otherwise noted, all
descriptions refer to the June 1988 (06/88) release of KIP.

3. Terminology

The KIP ‘‘Gateway’’ implements protocols for encapsulation of IP datagrams [RFC-
791] in DDP for transmission over AppleTalk [Sidhu90] internets (IP in DDP), and
encapsulation of DDP datagrams in UDP [RFC-768] for transmission over IP
internets (DDP in UDP). Both have been called ‘‘KIP’’ encapsulation; IP in DDP
(herein called DDP/IP) has also been called ‘‘Dartmouth encapsulation’’, ‘‘MacIP’’ and
‘‘Croft encapsulation’’ while DDP in UDP (herein called UDP/DDP) has been called
‘‘UDPTalk’’, ‘‘IPTalk’’, ‘‘AppleTalk in IP’’, ‘‘AppleTalk over UDP’’, and ‘‘IP tunneling’’.
KIP can speak both EtherTalk Phase 1 and UDP/DDP on Ethernet. This capability
has been called ‘‘doubletalk’’.

Budne Expires December 31, 1993 [Page 2]

DRAFT KIP AppleTalk/IP Gateway July 1993

The primary existing UDP/DDP host implementation of AppleTalk is the Columbia
AppleTalk Package (CAP) for UN*X systems. All references to CAP are for Columbia
Version 5.0 (using abkip.c).

The KIP sources use the historical terms ‘‘AppleBus’’ and ‘‘AppleTalk’’ in reference to
the ‘‘LocalTalk’’ physical medium, as KIP pre-dates the introduction EtherTalk (and
thus the use of the name AppleTalk for the protocol family rather than the medium).
The term ‘‘Kbox’’ is used here to refer to a FastPath running KIP (or any functionally
similar hardware and software).

All constants are in decimal unless otherwise noted.

The following ‘C’ type definitions apply to all data structures and code:

typedef unsigned char u_char; /* 8 bit ordinal */

typedef unsigned short u_short; /* 16 bit ordinal */

typedef unsigned long u_long; /* 32 bit ordinal */

typedef long iaddr_t; /* internet address */

4. UDP/DDP encapsulation

This section describes the algorithms and data structures used by KIP to implement
UDP/DDP encapsulation.

4.1. Motivation

UDP/DDP encapsulation was developed before Apple established a standard method
for the transmission of AppleTalk over Ethernet. One of the primary strengths (and
weaknesses) of UDP/DDP is that it uses static, centrally administered routing
information for the UDP/DDP backbone, eliminating the background chatter
generated by RTMP and ZIP. In addition one gains the ability to use the large
infrastructure of existing IP internets to transport AppleTalk over long distances.

IP networks on which UDP/DDP routers and endnodes are homed are assigned
AppleTalk network numbers. This distinguishes UDP/DDP from a strict point-to-point
‘‘tunneling’’ model in that endnodes can be implemented and it allows complete
interconnectivity between routers without a quadratic number of links.

Because of the static nature of UDP/DDP routes, partial (non-transitive) network
connectivity can be engineered (ie; A can see B and C, but B and C cannot see each
other).

4.2. UDP/DDP network numbers

KIP and CAP configuration files usually represent AppleTalk network numbers as a
dotted pair of decimal octets, thus network 258 is represented as 1.2. AppleTalk

Budne Expires December 31, 1993 [Page 3]

DRAFT KIP AppleTalk/IP Gateway July 1993

network numbers for UDP/DDP networks are chosen manually, and are arbitrary; In
fact, KIP does not learn from ‘‘seed’’ routers at all, and all AppleTalk port network
numbers must be manually configured. Each IP network which is to contain
UDP/DDP hosts (ie; CAP clients and servers) must be assigned a UDP/DDP
AppleTalk network number.

A common convention for the representation of 8 bit subnets of a class B network is
to put the subnet number in the low octet and an arbitrary constant in the top octet. If
the subnet is also used for EtherTalk a different high octet is used.

IP subnet UDP/DDP net EtherTalk netiii
129.2.50.0 55.50 57.50
129.2.100.0 55.100 57.100
129.2.200.0 55.200 57.200

As on any Phase 1 network, there can only be 254 hosts on a UDP/DDP network.
Only the first 254 hosts (low octet equal to 1 through 254) of a network with more
than 8 bits of host number are eligible to participate in UDP/DDP.

IP (sub-)networks with more than 254 hosts can be represented as several UDP/DDP
networks at the cost of redundant NBP lookup broadcast traffic.

4.3. UDP/DDP Node numbers

Each CAP UDP/DDP host must be associated with one UDP/DDP network (even if
the underlying IP host is multi-homed). The AppleTalk node number of a UDP/DDP
host is always the low order octet of the host’s IP address on the connected
UDP/DDP network.

4.4. UDP/DDP Address resolution

Since UDP/DDP encapsulation converts AppleTalk addresses to IP addresses
algorithmicly, no additional Address Resolution Protocol is required.

4.5. UDP/DDP packet format

UDP/DDP packets are encapsulated in UDP with the IP destination address and UDP
source and destination ports calculated based on route type (see next section).

Each UDP/DDP packet contains a dummy three byte LAP header (destination,
source and type) the same as LocalTalk and EtherTalk Phase 1. This has the helpful
effect of assuring alignment of the encapsulated data (otherwise the DDP header
would cause odd alignment). UDP/DDP packets output by KIP always have a LAP
destination of 250 and a LAP source of 206 (which spells ‘‘FACE’’ in a hex dump).

Budne Expires December 31, 1993 [Page 4]

DRAFT KIP AppleTalk/IP Gateway July 1993

Packets originated by CAP have the source and final destination nodes numbers
equal to the DDP source and destination node (regardless of the destination
network)!! KIP and CAP only send packets of LAP type 2 (long DDP).

KIP ignores the LAP header on input, and a long DDP packet must follow.

4.6. UDP/DDP Routing

The following ‘C’ data structure is used by KIP to internally represent all AppleTalk
routes:

struct aroute {

u_long node; /* next hop/IR: AT node OR IP addr */

u_short net; /* atalk net number, 0 if unused */

u_char flags; /* flags */

u_char hops; /* number of hops to this net */

u_char zone; /* zone index + 1 */

u_char age; /* age of entry in 20 second ticks */

u_char port; /* index of port route came in on */

};

/* flag fields */

#define arouteTYPE 0xe0 /* up to 8 types */

#define arouteCore 0x10 /* ’node’ is a "core" gateway */

#define arouteAA 0x08 /* this entry received via AA */

#define arouteSUBTYPE 0x03 /* TYPE specific information */

/* Kbox Type */

#define arouteKbox 0x80 /* ’node’ is IP addr of a Kbox */

define arouteEtalk 0x01 /* ’net’ is for Kbox EtherTalk */

/* Net Type */

#define arouteNet 0x40 /* IP net allows directed cast */

define arouteBMask 0x03 /* directed bcast format mask */

/* Host Type */

#define arouteHost 0x20 /* IP rebroadcast host */

define arouteAsync 0x02 /* virtual async atalk net */

Budne Expires December 31, 1993 [Page 5]

DRAFT KIP AppleTalk/IP Gateway July 1993

Note:
The arouteTYPE field should be treated as an enumeration despite the assignment of separate
bits for the existing values.

Similarly, the arouteSUBTYPE bits have not always been recognized as arouteTYPE specific.

Finally, the arouteCore flag should be associated only with ‘‘Kbox’’ routes.

The KIP AppleTalk routing table contains three types of routes; ‘‘Direct’’, ‘‘Local’’, and
‘‘IP’’.

4.6.1. Direct

The routes for the directly connected LocalTalk and EtherTalk networks have zero in
their hops, node, and flags fields. The first route in KIP’s routing table is for the
LocalTalk port, and the third is for the EtherTalk port (if configured).

4.6.2. Local

For routes learned via RTMP on the LocalTalk or EtherTalk interfaces, node is the
AppleTalk node number of an AppleTalk router on the connected network, and port
is the index of the associated interface. The flags field is zero and the hops field
is non-zero.

4.6.3. IP

For UDP/DDP routes (destinations that will be reached by sending the AppleTalk
DDP packet encapsulated in UDP), member node in the aroute struct is the IP
address of another Kbox or an IP network. The flags field contains information on the
type of ‘‘IP’’ route.

AppleTalk ‘‘IP’’ routes come in four flavors; ‘‘Net’’, ‘‘Host’’, ‘‘Kbox’’, and ‘‘Async’’.
‘‘Net’’, ‘‘Host’’, and ‘‘Async’’ routes all reach clients on (or connected to) IP hosts
(which are not capable of speaking ‘‘native’’ AppleTalk), while ‘‘Kbox’’ routes
represent native AppleTalk (LocalTalk and EtherTalk) networks reached by through
IP networks.

4.6.3.1. Net

If the arouteTYPE bits of the flags field are equal to arouteNet, the AppleTalk
network net is a UDP/DDP net coresident with an IP network that can be reached
with directed broadcasts. The arouteBMask bits of the flags field of the aroute
struct are the number of low order octets (zero to three) of ones (hex 0xff) to
logically OR with the network number in the node field to produce the (directed)
broadcast address. The second route in KIP’s routing table is a ‘‘Net’’ route to the
directly connected Ethernet/IP network.

Budne Expires December 31, 1993 [Page 6]

DRAFT KIP AppleTalk/IP Gateway July 1993

4.6.3.2. Host

If the arouteTYPE bits of the flags field are equal to arouteHost, the
AppleTalk network net is a UDP/DDP net coresident with an IP network that cannot
be reached by directed broadcasts. The node field of the aroute struct is the
address of a ‘‘rebroadcast host’’ which can broadcast packets on the destination
network. KIP 06/88 does not check the ‘‘subtype’’ bits (See below section on
‘‘Async’’ routes).

4.6.3.3. Kbox

If the arouteTYPE bits of the flags field are equal to arouteKbox, this
AppleTalk network is reached by sending the DDP datagram encapsulated in UDP to
the router located at address node. ‘‘Kbox’’ routes can refer to either ‘‘local’’ routes
learned by other gateways via RTMP and distributed by the ‘‘core’’ gateway
mechanism, or routes downloaded from the AppleTalk Administrator (AA) host in the
initial route table. The UN*X AA server implementation distributed with KIP is
atalkad. The arouteEtalk bit in the arouteSUBTYPE field exists as internal
information used by atalkad to differentiate LocalTalk and EtherTalk networks for
configuration purposes, and is not used by KIP at all (but is nonetheless passed to,
and saved by KIP).

4.6.3.4. Async

‘‘Async’’ is a recent extension which allows datagrams for a virtual AppleTalk network
to be forwarded to a single IP host with the UDP port demultiplexed by DDP
destination node number. This allows the gateway to deliver DDP datagrams for
each possible node on the Async network to a different UN*X user process with no
intermediary. ‘‘Async’’ networks are implemented as a subtype of ‘‘Host’’ networks,
with arouteSUBTYPE set to arouteAsync. Implementations which do not

Budne Expires December 31, 1993 [Page 7]

DRAFT KIP AppleTalk/IP Gateway July 1993

understand ‘‘Async’’ routes will treat them as ‘‘Host’’ routes, with undesirable results.

4.7. IP Route Algorithms

In ‘‘Kbox’’, ‘‘Net’’, and ‘‘Host’’ routes the destination UDP port is demultiplexed based
on the destination DDP socket (except for DDP broadcasts to ‘‘Host’’ networks). This
allows the gateway to deliver DDP datagrams for each possible DDP socket to a
different UN*X user process with no intermediary.

The following table shows how the aroute type and the DDP destination node
select algorithms to calculate the UDP destination port and IP destination address.

IP dest addr algorithm / UDP dest port algorithm.

IP Route Type DDP unicast DDP broadcastii
Net Alg A/Alg P Alg B/Alg P
Host Alg A/Alg P Alg C/Alg Q
Kbox Alg C/Alg P Alg C/Alg P
Async Alg C/Alg R Alg C/Alg S

The UDP source port is always calculated by applying Algorithm P to the ddp source
socket.

In the following code fragments the variable ddp is of type struct DDP and
describes the long DDP header of the outgoing AppleTalk packet;

struct DDP {

...

u_short dstNet; /* dest net */

u_short srcNet; /* src net */

u_char dstNode; /* dest node */

u_char srcNode; /* src node */

u_char dstSkt; /* dest socket */

...

} ddp;

The variable ar is a pointer to the aroute struct for the DDP destination net in the
AppleTalk routing table.

4.7.1. IP destination address algorithms

The following are the algorithms for calculating the IP destination host address of the
UDP/DDP datagram expressed in ‘C’.

The variable ip is of type struct ip and describes the IP header of the outgoing

Budne Expires December 31, 1993 [Page 8]

DRAFT KIP AppleTalk/IP Gateway July 1993

IP datagram;

struct ip {

...

iaddr_t ip_src; /* IP source address */

iaddr_t ip_dst; /* IP dest address */

} ip;

4.7.1.1. Algorithm A

Algorithm A is used to deliver unicast (non-broadcast) packets on ‘‘Host’’ and ‘‘Net’’
networks directly to the destination host on a UDP/DDP network. The IP destination
is formed by taking the high 24 bits from node, and the low 8 bits from the DDP
destination node number.

ip.ip_dst = (ar->node & ˜0xff) | ddp.dstNode;

4.7.1.2. Algorithm B

Algorithm B is used to broadcast packets to ‘‘Net’’ networks, relying on directed
broadcast delivery. The IP destination is formed using the node field and as many
low order octets of ones as specified by the arouteBMask field of flags. If the
destination AppleTalk network is the connected Ethernet UDP/DDP network, the
configured IP broadcast address (member ipbroad in the configuration structure) is
used as the IP destination.

u_long ipbroadtypes[] = { 0, 0xff, 0xffff, 0xffffff };

/* directly connected UDP/DDP net? */

if(ddp.destNet == ifie.if_dnet) {

/* use configured IP broadcast */

ip.ip_dst = conf.ipbroad;

}

else {

/* create directed broadcast */

ip.ip_dst = ar->node |
ipbroadtypes[ar->flags & arouteBMask];

}

4.2 BSD style (zero-fill) broadcast addresses (for networks with 8 bits of host) can be
generated by specifying zero octets of ones.

Networks that cannot be reached with broadcast addresses that do not have a
integral number of low-order one-filled octets cannot use ‘‘Net’’ routes, and must use

Budne Expires December 31, 1993 [Page 9]

DRAFT KIP AppleTalk/IP Gateway July 1993

‘‘Host’’ routes (see below).

4.7.1.3. Algorithm C

Algorithm C is used for delivery of broadcasts on ‘‘Host’’ networks, and all packets on
‘‘Kbox’’ and ‘‘Async’’ networks to a specific host address. The IP destination is the IP
host specified in the node (next IR) field .

ip.ip_dst = ar->node;

4.7.2. UDP destination port algorithms

The following are the algorithms for calculating the UDP destination port of the
UDP/DDP datagram expressed in ‘C’, using the following structure for the output
UDP header;

struct udp {

u_short uh_src; /* source port */

u_short uh_dst; /* destination port */

...

} udp;

4.7.2.1. Algorithm P

Algorithm P is used for delivery of all packets on ‘‘Net’’ and ‘‘Kbox’’ networks and
unicast packets on ‘‘Host’’ networks. Packets for each possible DDP socket are
directed to a different UDP port on the destination host.

‘‘Static’’ or ‘‘Well Known’’ DDP sockets (those below 128) originally used a UDP port
base of 768 (300 hex), however in April of 1988 the NIC reserved ports 201 through
208 (a port base of 200) for use by KIP [RFC-1060]. UDP ports 768 and 200 are
never used, since use of DDP socket zero is illegal. See the ‘‘Discussion’’ section
below.

The UDP port range used for static DDP sockets is configured via the aaCONF
packet (ie; from atalkatab). The UDP port range base used for ‘‘dynamic’’ DDP
sockets is fixed at 16384 (4000 hex).

Budne Expires December 31, 1993 [Page 10]

DRAFT KIP AppleTalk/IP Gateway July 1993

#define ddpWKSBase 200 /* start of NIC WKS range */

#define oddpWKSBase 768 /* start of old WKS range */

#define ddpNWKSBase 16384 /* non WKS... */

/* "well known" (ie; static) socket number?? */

if(ddp.dstSkt < 128) {

if(conf.startddpWKS == 0) {

/* no WKS range configured

* be backwards compatible

*/

startddpWKS = oddpWKSBase;

}

else {

/* usually ddpWKSBase (200) */

startddpWKS = conf.startddpWKS;

}

udp.uh_dport = ddp.dstSkt + startddpWKS;

}

else /* not a WKS, use NWKS port range */

udp.uh_dport = ddp.dstSkt + ddpNWKSBase;

4.7.2.2. Algorithm Q

Algorithm Q is used to deliver DDP broadcasts for ‘‘Host’’ networks to a
‘‘rebroadcast’’ server for local broadcast or selective directed delivery.

#define rebPort 902

udp.uh_dport = rebPort;

4.7.2.3. Algorithm R

Algorithm R is used to deliver DDP unicast packets for ‘‘Async’’ networks to the
async server host based on the DDP destination node. This is done so that each
dialin user running the async program can receive packets destined for their node
without additional handling on the server host.

#define aaBasePort 0xAA00 /* Async AppleTalk base port */

udp.uh_dport = aaBasePort + ddp.dstNode;

Budne Expires December 31, 1993 [Page 11]

DRAFT KIP AppleTalk/IP Gateway July 1993

4.7.2.4. Algorithm S

Algorithm S is used to deliver DDP Broadcasts for ‘‘Async’’ networks to a single UDP
port so that the asyncad daemon can forward the packet to all registered async
dialin users on the UN*X host.

#define aaBroadPort 750 /* aabroad in /etc/services */

udp.uh_dport = aaBroadPort;

4.7.3. Discussion

The primary benefit realized by the DDP/UDP port mapping expressed in Algorithm P
is the efficient implementation of AppleTalk on systems with a system level UDP
implementation and no system level AppleTalk (ie; Vanilla BSD UN*X), as system
level UDP port demultiplexing is used to deliver the DDP packets directly to the user
process.

Creating this one-to-one relationship between DDP sockets and UDP ports on the
UDP/DDP host is feasible because the size of the DDP socket space is much smaller
than the UDP port space (2ˆ8 vs. 2ˆ16). Furthermore the UDP ports in the WKS and
NWKS ranges can be used for other purposes, but only those ports can be used for
UDP/DDP applications.

However it is difficult to implement a UDP/DDP AppleTalk interface on a system with
both formalized UDP and DDP layers (ie; a UDP/DDP ‘‘adev’’ for a Mac using
‘‘MacTCP 1.0’’). A similar difficulty is seen implementing a UDP/DDP AppleTalk
router in a user process on a system with a typical system level UDP implementation
(ie; UN*X), as the router process has to listen on and send from 254 different UDP
ports.

Ed Moy of UCB has done work on a version of IPTalk that uses only one UDP port
for transmissions between hosts.

4.8. KIP UDP/DDP input processing

When KIP receives UDP input on a port in either the ‘‘Well Known’’ or ‘‘Not Well
Known’’ DDP socket range, it strips the UDP and pseudo LAP headers, and passes
the (long) DDP packet to the regular DDP input layer.

4.9. KIP Route Aging

KIP ages all AppleTalk routes every 20 seconds. Local (RTMP) routes are kept for
two aging periods, while learned IP routes are kept for 16 periods. Initial IP routes
(from atalkad), and routes for directly connected networks are never aged.

Budne Expires December 31, 1993 [Page 12]

DRAFT KIP AppleTalk/IP Gateway July 1993

4.10. CAP routing

Each CAP client keeps the IP address, DDP network and node numbers of the last
host from which it received a UDP/DDP packet. This means that CAP is able to
return some packets without sending them first to a local gateway (in violation of
Phase 1 rules)!! If on output the DDP destination net and node both match the
cached information, the packet is sent to the cached IP address, otherwise the
packet is routed to a single statically configured local gateway.

4.11. CAP socket assignment

When a CAP client or server wishes to obtain a dynamic DDP socket it must search
the UDP port range associated with the DDP ‘‘Not Well Known’’ socket range for a
free local UDP port. Since the UDP ports in both the old and new ‘‘Well Known’’
(static) ranges are below 1024, only processes executing as ‘‘super user’’ may open
them.

Name Information Table (NIT) maintenance for CAP hosts is implemented in a single
process, by a program named atis (the appletalk information server). Atis
listens on the Name Information Socket (NIS) for LkUp requests and sends LkUp-
Reply packets. CAP servers must send special register and unregister requests to
atis to modify the NIT.

Atis also listens on DDP socket 4 for AppleTalk Echo Protocol (AEP) packets, and
will send an echoReply for each echoRequest received.

4.12. CAP Zones

Each CAP host is staticly configured with a zone name, and atis will only answer
NBP LkUp’s in its own zone. NBP LkUp’s sent by KIP always include the zone
(never ‘‘*’’). See section on the magic ALL zone.

4.13. AppleTalk Administration (AA) packets

KIP is downloaded with a configuration that specifies only it’s own IP address, a
default router and the address of an administrator host which will supply additional
configuration information. KIP receives this configuration information and exchanges
routing information on UDP port 901 (the aaPort). The packets used are called
AppleTalk Administration, or ‘‘AA’’ packets. KIP will only accept AA packets sent
from it’s configured AppleTalk Administrator host (member ipadmin in
configuration), IP debug host (member ipdebug in configuration), or from any
‘‘Kbox’’ marked as from the AA host in the aroute table. Each packet must have a
UDP source port of 901.

KIP relies exclusively on the AA protocol to distribute routing information for
UDP/DDP networks; RTMP packets are never exchanged over UDP/DDP networks.

Budne Expires December 31, 1993 [Page 13]

DRAFT KIP AppleTalk/IP Gateway July 1993

All AA packets have the following structure:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

: aaMagic (0xFF068030) :

+-+

: opcode : flags : byte count of stuff :

+-+

: IP address of sender (never checked) :

+-+

: :

/ stuff: /

/ config info or route tuples /

/ (up to 512 octets) /

: :

+-+

The data portion of the packet (member stuff) is limited to 512 octets to avoid IP
fragmentation.

Here are the valid opcode values;

aaCONF 1 Configuration request/reply
aaROUTEI 2 Initial routes from AA
aaROUTE 3 Route update
aaROUTEQ 4 Route update and query
aaRESTART 5 Force restart
aaZONE 6 Initial zones from AA (obs)
aaZONEQ 7 DDP ZIP over AA

Two recent, commonly implemented extensions (originated by the University of
Melbourne) are:

aaROUTEM 32 More routing info
aaROUTER 33 Request routing info

The following are AA protocol extensions which are not widely implemented (if at all),
and will not be discussed further;

A CMU extension:

aaROUTEIS 8 Short initial route table

LBL-KIP extensions (also in K-STAR 9.1);

Budne Expires December 31, 1993 [Page 14]

DRAFT KIP AppleTalk/IP Gateway July 1993

aaREBOOT 9 Force code download (via BOOTP)
aaRESET 10 Reset code and config

Extensions used by University of Melbourne;

aaPROXY 62 NBP Proxy ARP table
aaPROXYQ 63 NBP Proxy ARP table request

Extensions proposed by Karen Frisa in ‘‘IPTalk routing for AppleTalk Phase 2’’
(7/27/90), but never implemented;

aaROUTERANGE 9 Table update with ranges
aaROUTERANGEQ 10 Table update and query with ranges

Budne Expires December 31, 1993 [Page 15]

DRAFT KIP AppleTalk/IP Gateway July 1993

4.13.1. aaCONF packet

On startup KIP sends a minimum length (12 byte) aaCONF packet to the ‘‘AA’’ host
as a configuration request. The AA host then replies with a full configuration conf
structure in the data portion of an aaCONF packet;

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

: IP broadcast address * :

+-+

: IP name server ** :

+-+

: IP debug host :

+-+

: IP file server ** :

+-+

: ipother[0] ** :

+-+

: ipother[1] ** :

+-+

: ipother[2] ** :

+-+

: ipother[3] ** :

+-+

: EtherTalk net : start ddp WKS UDP port range :

+-+

: flags :

+-+

: # of static clients : # of dynamic clients :

+-+

: LocalTalk net : UDP/DDP net :

+-+

: :

: spare :

: (was once zone info) :

: :

+-+

Budne Expires December 31, 1993 [Page 16]

DRAFT KIP AppleTalk/IP Gateway July 1993

Note:
Entries with * are used by KIP and passed to DDP/IP clients via ‘‘IPGP’’. Entries with ** are NOT
used by KIP and are passed to DDP/IP clients via ‘‘IPGP’’.

Values for flags (may be OR’ed together);

Flag Value Meaning
conf_stayinzone 1 No looking at other zones
conf_laserfilter 2 NBP LaserWriter filtering
conf_tildefilter 4 NBP Tilde filtering

4.13.2. Routing Tuples

aaROUTEI, aaROUTE, aaROUTEQ, and aaROUTEM packets contain routing tuples
(called arouteTuple’s) of the following format:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

: IP net or host :

+-+

: atalk net : flags : hops :

+-+

The flags field of the arouteTuple uses the same flags as the aroute
structure.

NOTE: This differs from RTMP in that it contains the explicit address of the ultimate
destination.

4.13.3. aaROUTEI packet

The AA host sends KIP an aaROUTEI packet to install an initial (static) routing table.
On receipt of an aaROUTEI, KIP flushes all routes marked as ‘‘from AA’’ (with the
arouteAA flag set), and inserts the enclosed routes into it’s routing table marked as
‘‘from AA’’.

The atalkad route command sends KIP an unsolicited aaROUTEI packet.

On startup KIP sends a minimum length (12 byte) aaROUTEI packet as a request
every 60 seconds until a reply is received.

4.13.4. aaROUTEQ packet

Once a minute KIP sends an aaROUTEQ packet to a ‘‘core’’ gateway. Core
gateways are those Kboxes which appear in KIP’s routing table as ‘‘Kbox’’ routes with
the arouteCore flag set. The core gateways are sent to in turn, round-robin.

Budne Expires December 31, 1993 [Page 17]

DRAFT KIP AppleTalk/IP Gateway July 1993

‘‘Core’’ gateways send aaROUTEQ as well (KIP does not contain code to detect
whether it is a ‘‘core’’ gateway or not), but a ‘‘core’’ gateway will skip it’s own address.

The aaROUTEQ packet contains ‘‘Kbox’’ routes (with the gateway IP address in the
node field) for each AppleTalk route that the gateway has learned via RTMP (those
which qualify as ‘‘Local’’ routes).

On receipt of an aaROUTEQ KIP merges the routes into it’s routing table and replies
with an aaROUTE packet containing ALL routes which are not marked as ‘‘from AA’’.

4.13.5. aaROUTE packet

On receipt of an aaROUTE packet KIP merges the contained routes into it’s routing
table.

4.13.6. aaRESTART packet

KIP will restart execution upon receipt of an aaRESTART packet.

The atalkad boot command sends an aaRESTART packet to each Kbox in
/etc/atalkatab.

4.13.7. aaZONE packet

aaZONE is an obsolete packet format used for zone information. KIP 06/88 does not
send or process aaZONE packets. An empty aaZONE packet was sent by KIP as a
request, and returned with data by atalkad.

The format of aaZONE packet data is a list of (2 byte) AppleTalk network numbers
terminated by a zero net number and followed by a ‘‘pascal’’ string (ie; string prefixed
by a byte count byte) for the zone. The packet is terminated by an network number
of all ones (hex 0xffff).

4.13.8. aaZONEQ packet

aaZONEQ packets contain regular DDP ZIP Query and Reply packets.

KIP sends aaZONEQ packets containing ZIP Query requests to the AA host for
routes marked as ‘‘from AA’’ or to the IP address in the node field of the route for
routes learned via ‘‘core’’ gateways.

KIP and atalkad respond to aaZONEQ encapsulated Queries with ZIP Reply
packets inside a aaZONEQ.

4.13.9. aaROUTER packet

This is a recent extension implemented in Rutgers KIP (RU-KIP) and various
commercial offerings. If the flags field in the AA packet header of the aaROUTEI

Budne Expires December 31, 1993 [Page 18]

DRAFT KIP AppleTalk/IP Gateway July 1993

packet returned by the AA host is non-zero, it is interpreted as a count of the total
number of initial route packets. The flags field of the AA packet header in an
aaROUTER packet is interpreted as an initial route packet ‘‘serial number’’. Since the
aaROUTEI packet contains the first 64 routes, the first aaROUTER request contains
the value one in the flags field.

4.13.10. aaROUTEM packet

This is a recent extension implemented in Rutgers KIP and various commercial
offerings. Atalkad sends the n-th additional initial route packet in response to the
aaROUTER request in an aaROUTEM packet. RU-KIP increments its request serial
number regardless of the contents of the flags field in the incomming aaROUTEM
AA packet header.

4.14. Aroute input Processing

KIP uses the same code to integrate new routes regardless of whether they were
acquired using the AA protocol or RTMP. Of particular note is that hopcount values
are incremented on input, and that worse-cost changes are only accepted if the new
destination node matches the currenly saved node value. Thus the AA protocol is
being treated as a distance vector routing protocol.

However, distance vector routing systems depend on the fact that routing tuple
hopcounts reflect actual distance because the routing data traverses the same path
as the network data. This is not true for the AA protocol; Data packets are sent
directly without traversing the core gateways through which the routing data was
passed, so the hopcounts of routes obtained from core gateways are too high.

In the presense of more than one core gateway, the hopcount of a core gateway
learned route will often be inflated owing to the route being passed between core
gateways since the ‘‘destination’’ host will be the same, the longer route will be
accepted. With two or more core gateways, routes can take more than an hour to
die.

Because the AppleTalk distance from any one ‘‘Kbox’’ to another is always one hop
(the actual number of intervening IP gateways cannot be detected) the AppleTalk
cost should be propogated though the core gateway routing system unchanged.
However then another metric would be needed limit route lifetime (by couting the
number of router traversals to ‘‘infinity’’ or by counting route ‘‘time to live’’ down to
zero).

4.14.1. Initial routes

The atalkad supplied with KIP 06/88 sends a hopcount of zero for all routes in the
aaROUTEI packet (all other versions supply a hopcount of one), so all initial entries in

Budne Expires December 31, 1993 [Page 19]

DRAFT KIP AppleTalk/IP Gateway July 1993

the routing table will be one hop away (except for the directly connected LocalTalk,
EtherTalk and UDP/DDP networks).

4.15. AppleTalk Administrator Packet Exchanges

The following tables show AA packet exchanges involving KIP.

4.15.1. restart

This occurs when an user issues the atalkad boot command. Atalkad sends
an aaRESTART to each ‘‘Kbox’’ in /etc/atalkatab.

AA Host KIPiiiiiiiiiiiiiiiiiiiiiiiii
aaRESTART

KIP reboots

4.15.2. KIP boot sequence

On startup KIP requests configuration information from the AppleTalk Administrator
(AA) host by sending minimum length aaROUTEI packets once a minute until it gets
a response.

AA Host KIPiii
aaCONF (no data)

aaCONF (with data)

followed by either the ‘‘atalkad route sequence’’ or ‘‘atalkad route sequence with
extension’’

4.15.3. atalkad route sequence

The ‘‘atalkad route sequence’’ occurs as part of the ‘‘KIP boot sequence’’ or as the
result of an atalkad route command. The contents of the AA packet header
flags field is shown in brackets.

AA Host KIPiiiiiiiiiiiiiiiiiiiiiiiiii
aaROUTEI[0]

aaROUTEQ

Budne Expires December 31, 1993 [Page 20]

DRAFT KIP AppleTalk/IP Gateway July 1993

4.15.4. atalkad route sequence with extension

The ‘‘atalkad route sequence with extension’’ occurs as part of the ‘‘KIP boot
sequence’’ or as the result of an atalkad route command when the gateway
implements the aaROUTER and aaROUTEM packets and the flags sent with the
aaROUTEI packet were non-zero.

The contents of the AA packet header flags field is shown in brackets.

AA Host KIPiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
aaROUTEI[n]

aaROUTER[1]
aaROUTEM[1]

aaROUTER[2]
aaROUTEM[2]

...
...

aaROUTER[n-1]
aaROUTEM[n-1]

aaROUTEQ

4.15.5. aaZONEQ exchange

KIP sends ZIP Query and Reply packets encapsulated in aaZONEQ packets to
either the AA host, or other Kboxes to acquire the zone name for networks reached
via UDP/DDP encapsulation.

KIP AA Host or KIPiii
aaZONEQ(ZIP Query)

aaZONEQ(ZIP Reply)

4.15.6. Core GW exchange

KIP sends RTMP learned ‘‘Local’’ routes to Kboxes marked as ‘‘core’’ gateways in it’s
routing table. The core gateway responds with all UDP/DDP routes not marked as
‘‘from AA’’.

KIP KIP Core GWiiiiiiiiiiiiiiiiiiiiiiiii
aaROUTEQ

aaROUTE

4.16. Rebroadcast Port

KIP accepts UDP packets on port 902 (the rebPort) if the destination IP address
matches the gateway address (broadcasts are not accepted, nor are packets

Budne Expires December 31, 1993 [Page 21]

DRAFT KIP AppleTalk/IP Gateway July 1993

rerouted), and passed to the ddpinput routine for processing based on the embedded
DDP destination.

If the packet is a DDP broadcast, KIP will broadcast the packet using the configured
broadcast address as the IP destination, while the UN*X atalkrd server distributed
with KIP can be given a list of addresses (via command line arguments) for
forwarding packets.

4.17. atalkatab

The UN*X AA server implementation distributed with KIP is called atalkad, and the
configuration file read by atalkad is called atalkatab.

atalkatab format is best compared to assembly language; each line is a textual
representation of binary structures to be generated and stored for later retrieval.

4.17.1. route line format

Initial routes and zones to be sent in aaROUTEI, aaROUTEM and aaZONEQ replies
are generated by ‘‘route lines’’ of the following format;

net flags ipaddr zone

Where net is the DDP net to be configured. As mentioned earlier, nets may be
represented as a pair of dotted decimal octets, or as a simple decimal integer.

flags is a series of mnemeonic characters which represent values to ‘‘OR’’ together to
generate the arouteTuple flags field;

character(s) bit(s)iii
0123 arouteBmask
A arouteHost+arouteAsync
C arouteCore
E arouteKbox+arouteEtalk
K arouteKbox
H arouteHost
N arouteNet

The digits zero through three the corresponding binary value to be ‘‘ORed’’ into the
flags field (to set the ‘‘Net’’ broadcast format).

ipaddr is an IP address to be stored in the node field.

4.17.2. Kbox configuration section

Configuration for ‘‘Kboxes’’ to be sent in aaCONF packets is represented on
whitespace prefixed lines following a K line. Configuration information is a series of

Budne Expires December 31, 1993 [Page 22]

DRAFT KIP AppleTalk/IP Gateway July 1993

key-characters which control both the interpretation of the data to follow, and the
amount of data to be stored.

key interpretation size in bytesii
I Internet host name/addr 4
L Long integer 4
S Short integer 2
%n net config 2
B Byte integer 1

Integer data is interpreted as decimal unless prefixed with the letter X, numbers
prefixed with a leading zero are interpreted as octal. Short integers can be entered
as dotted pairs.

The pair of characters %n has magic properties when it appears at the data offsets
associated with the configuration for each of the AppleTalk ‘‘ports’’; LocalTalk,
EtherTalk, and UDP/DDP.

For the LocalTalk port %n takes on the value of the net number on the preceding K
line. For the EtherTalk port %n takes on the value of the net number on the first
preceding E line where the ipaddr of the E line matches the IP address of the
current Kbox. For the UDP/DDP port %n takes on the value of the net number on
the first H or N line where the top three bytes of the ipaddr of the H or N line
matches the IP address of the current Kbox.

In addition strings of characters may be entered delimited with ‘‘quote’’ character
(ASCII 34). Counted ‘‘PASCAL’’ strings may be entered delimited with the ‘‘accent
grave’’ or ‘‘backquote’’ character (ASCII 96).

4.18. Related DDP in IP encapsulations

KIP-style DDP in IP encapsulation has been used in two other contexts. Both use
the same pseudo-LAP header as KIP UDP/DDP, but use different UDP ports.

4.18.1. UAB ‘‘mKIP’’ encapsulation

UAB (UN*X AppleTalk Bridge) is a Phase 1 AppleTalk Router which runs on UN*X
systems and speaks EtherTalk Phase 1. UAB communicates with CAP client
software on the local host (via UDP to the loopback address) using an encapsulation
called ‘‘modified KIP’’. Because it would be impossible to configure CAP with the
local host as the ‘‘bridge node’’ (both because this would require opening more than
200 UN*X ‘‘sockets’’, and because doing so would prevent the clients from opening
any), UAB listens on the UDP port 903 (the mrebPort), for packets from local
clients to be routed to EtherTalk.

Budne Expires December 31, 1993 [Page 23]

DRAFT KIP AppleTalk/IP Gateway July 1993

4.18.2. Point to Point links using RTMP

Cayman and other vendors use KIP style DDP/IP encapsulation on UDP port 910 to
implement point to point ‘‘tunnels’’ between gateways. Phase 2 RTMP and ZIP are
sent (to and from DDP net and node zero) across the ‘‘link’’ (as determined by IP
source) to exchange routing and zone information.

Owing to the high update rate of RTMP, it is impractical to create large fully
connected routing systems due to the quadratic number of links (nˆ2 - n) and update
packets.

5. NBP Filtering

KIP performs three types of NBP based filtering; ‘‘Stay in Zone’’, ‘‘LaserWriter’’, and
‘‘Tilde’’.

Note:

5.1. Stay in Zone filtering

‘‘Stay in Zone’’ filtering (enabled by the conf_stayinzone flag) is the most
restrictive type. If enabled, machines on the gateway LocalTalk will only be able to
access resources within their own zone through KIP. Access to ANY resource
outside this zone will be prevented.

‘‘Stay in Zone’’ filtering is implemented by never sending NBP LkUp requests (when
expanding NBP BrRq requests) to nets which are not in the same zone as the
LocalTalk port, and by sending empty replies for ZIP GetZoneList requests, so
that no zone list appears in the Macintosh ‘‘chooser’’.

5.2. LaserWriter filtering

‘‘LaserWriter filtering’’ (enabled by the conf_laserfilter flag) allows free access
to LaserWriters in the gateway’s LocalTalk zone by all members of this zone.
However machines outside this zone will be unable to see any LaserWriters behind
this Kbox.

‘‘LaserWriter filtering’’ is implemented by routing NBP LkUp-Reply packets which
contain NBP type LaserWriter ONLY if the source net is in the same zone as the
gateway’s LocalTalk or the source and destination nets are both in the gateway’s
LocalTalk zone.

Note:
Absolute determination of the source and destination zones from net numbers are only possible in
an AppleTalk Phase 1 environment!

Budne Expires December 31, 1993 [Page 24]

DRAFT KIP AppleTalk/IP Gateway July 1993

5.3. Tilde filtering

‘‘Tilde filtering’’ (enabled by the conf_tildefilter flag) is similar to ‘‘LaserWriter
Filtering’’. By default, all NBP names will be accessible outside the gateway
LocalTalk zone. However if an NBP entity name ends in the tilde character ‘‘˜’’ (e.g.
Our Printer˜), then this name will no be seen by machines outside of the zone.

Note:
When KIP performs LaserWriter and ‘‘Tilde’’ filtering it only looks at the first tuple of the NBP
LkUp-Reply packet. If the first tuple matches the filtering test, the entire packet will be dropped.
If the first tuple fails the filtering test the entire packet will be dropped.

6. Magic ALL zone

The zone name ALL has magic properties to KIP; it allows CAP hosts on an
Ethernet with one gateway to appear in disparate zones. NBP LkUp’s are always
sent to nets in zone ALL, regardless of the target zone in the BrRq packets. KIP
will never return the zone name ALL in a ZIP GetZoneList reply, so it will never
be seen in a list of zones (ie; Mac ‘‘Chooser’’ or CAP getzones). Since KIP always
replaces ‘‘*’’ with the source zone of the BrRq and atis checks the zone on
incoming LkUp’s each CAP host will only appear in one zone.

7. Gateway Debug protocol

KIP provides for remote examine and deposit of memory locations by the configured
ipdebug host via packets sent to UDP port 900 (the gwdbPort).

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

: gwdbMagic (0xFF068020) :

+-+

: op : seq : count :

+-+

: address :

+-+

: :

/ data /

/ (up to 512 octets) /

: :

+-+

op codes for gwdb;

gwdbRead 1 Read memory

Budne Expires December 31, 1993 [Page 25]

DRAFT KIP AppleTalk/IP Gateway July 1993

gwdbWrite 2 Write memory
gwdbCall 3 Not implemented

LBL KIP uses the following op codes:

gwdbStats 4 Return statistics
gwdbState 5 Return configuration
gwdbFrame 6 Return stack frame

Shiva uses the following op code for remote debug with GDB:

gwdbGdb 99

7.1. gwdb Read function

count octets starting at address in the gateway memory are copied to data, and
the packet is returned.

7.2. gwdb Write function

count octets of data from data are copied to address in the gateway memory
and the packet is returned unmodified.

7.3. gwdb Call function

KIP does not implement this function! For unimplemented functions KIP clears the
op byte and returns the packet.

7.4. gwdb State function

This function is implemented by LBL KIP and K-STAR, and returns FastPath specific
information in data;

/*

* Structure of data area in a ’state’ reply.

*/

struct gwdb_State {

struct fp_version version;

struct fp_state state;

};

7.5. gwdb Stats function

This function is implemented only by LBL KIP.

Budne Expires December 31, 1993 [Page 26]

DRAFT KIP AppleTalk/IP Gateway July 1993

7.6. gwdb Frame function

This function is implemented by LBL KIP and K-STAR and returns the machine state
of the processor; D0-D7, A0-A7, SR (left padded to 32 bits).

7.7. gwdb Gdb function

Shiva uses this function. The following remote gdb commands are supported:

Command Function Return valueii
g return the value of the CPU registers ENN / data
G set the value of the CPU registers ENN / OK
mAA..AA,LLLL Read LLLL octets at address AA..AA ENN / data
MAA..AA,LLLL Write LLLL octets at address AA..AA ENN / OK
c[AA..AA] Continue [at address AA..AA] SNN
s[AA..AA] Step one instruction [from AA..AA] SNN
? What was the last signal? SNN
k kill (ignored)

Where ‘‘AA..AA’’, ‘‘LLLL’’ and ‘‘NN’’ are in hex. ‘‘SNN’’ represents an exception
encoded as a UN*X signal number NN and ‘‘ENN’’ represents an error condition.
All returns marked ‘‘data’’ are streams of octets encoded in hexadecimal.

8. DDP/IP encapsulation
Note:
While the Apple-IP Working Group of the IETF is working to standardize and extend the protocols for
IP over AppleTalk, however no description exists of the historical implementation.

KIP provides an IP ‘‘forwarding’’ capability that allows AppleTalk nodes appear to be
located on the Ethernet by sending ‘‘proxy ARP’’ replies for IP addresses in a ‘‘client
range’’.

The DDP/IP encapsulation protocol consists of three parts; Encapsulation, Dynamic
address assignment, and Address Resolution.

8.1. Encapsulation

IP Datagrams are encapsulated in DDP packets of type 22 with DDP source and
destination sockets of 72.

8.2. Address Resolution

KIP uses AppleTalk NBP LkUp’s to achieve IP address resolution. This allows
routing of IP packets within an AppleTalk zone, without requiring any changes to
intermediate DDP routers within the zone.

Budne Expires December 31, 1993 [Page 27]

DRAFT KIP AppleTalk/IP Gateway July 1993

Each DDP/IP host must NBP register a tuple of type IPADDRESS with the object
name set to the dotted decimal representation of the host’s IP address. This ensures
that only one host is using an IP address at a time, and allows hosts (both
Macintoshes and KIP) to locate each other by address using NBP.

KIP maintains DDP addresses alongside Ethernet addresses in it’s ARP cache.
When KIP needs to route an IP packet to a client (static or dynamic) which does not
appear in the cache, it performs an NBP lookup (as a.b.c.d:IPADDRESS) in the
zone associated with the Kbox LocalTalk port. Because of this clients must be
located in the same zone as the Kbox.

NBP replies for type IPADDRESS are always processed as both ARP replies and
dynamic address confirmations.

8.2.1. NBP Proxy ARP

In order to maintain the illusion that the DDP/IP hosts are located on Ethernet, KIP
must reply in proxy for NBP ARP’s for addresses NOT in the gateway client range (as
opposed to on Ethernet where KIP replies for addresses in the client range) as well
as it’s own IP address so that packets for hosts that are really on the Ethernet are
routed via the gateway!

KIP does not reply to NBP ARP’s in it’s client range to allow clients to NBP register
(which requires first performing a zone wide search for current users of a name). This
would prevent more than one gateway from operating in the same zone (since one
gateway or the other will reply to any IPADDRESS lookup) however, KIP will only
send replies for lookups of type IPADDRESS if the reply would be routed via the
LocalTalk port.

Some DDP/IP client software attempts to resolve all IP addresses into a DDP
destination using NBP ARP (depending on NBP Proxy ARP Replies from the
gateway), while others will only NBP ARP for addresses which are on the connected
IP network (as determined by it’s own IP address and a (sub)net mask), and route all
other packets via a default gateway on the connected net.

8.2.2. DDP ARP

Another method was previously used for DDP/IP IP Address Resolution. Work done
in the summer of 1984 at Dartmouth [Sherman86] treated the LocalTalk as a distinct
IP network, and sent ARP [RFC-826] using DDP type 23, and hardware type 3 for
‘‘AppleBus’’.

This method requires that an entire IP (sub)net be assigned for use by LocalTalk
hosts, and at the same time limits the IP (sub)net to a single LocalTalk wire. IP
addresses on the LocalTalk (sub)net can either be assigned staticly, or the host’s

Budne Expires December 31, 1993 [Page 28]

DRAFT KIP AppleTalk/IP Gateway July 1993

LAP node number can be used as the IP address host part to provide a dynamic IP
address!

The original SEAGate code converted between IP and DDP addresses by equating
the DDP net number and IP subnet numbers.

8.3. Dynamic Address Assignment

So that each potential client need not be configured with an IP address (and that a
large number of clients can share a small pool of addresses), KIP can perform IP
address assignment on an on-demand basis from a pool of ‘‘dynamic’’ addresses.

KIP receives configuration for the number of static and dynamic clients from
atalkatab. Up to 60 dynamic addresses can be configured. Static client addresses
follow directly after the gateway address, and dynamic addresses follow after the
static addresses.

So that potential dynamic clients can locate the gateway, KIP responds to NBP
LkUp’s of type IPGATEWAY with the dotted decimal representation of it’s address as
the object name, and socket number 72. KIP will only respond to lookups of type
IPGATEWAY if it would route the reply via it’s LocalTalk port. This keeps different
Mac’s in the same zone, but behind a different gateway on the same Ethernet from
getting an address from the wrong box!

For each dynamic address, KIP keeps the following three-tuple: net, node,
timer. Where net and node, is the client’s DDP address, and timer counts
how many minutes have passed since the entry has been successfully ‘‘confirmed’’.

Budne Expires December 31, 1993 [Page 29]

DRAFT KIP AppleTalk/IP Gateway July 1993

A non-zero timer value indicates the entry is in use.

8.3.1. IPGATEWAY Protocol

The protocol used for dynamic address assignment is called IPGP (for the
IPGATEWAY Protocol), and is sent using ATP. KIP processes IPGP packets
received on DDP socket 72 (KIP accepts and replies to both XO and ALO ATP
requests, but provides only ALO service).

8.3.1.1. ipgp packet format

The four ATP ‘‘user bytes’’ (in the ATP header) are ignored.

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

: op :

+-+

: IP address :

+-+

: IP name server :

+-+

: IP broadcast address :

+-+

: IP file server :

+-+

: ipother[0] :

+-+

: ipother[1] :

+-+

: ipother[2] :

+-+

: ipother[3] :

+-+

: :

/ /

/ string (128 octets) /

/ /

: :

+-+

Budne Expires December 31, 1993 [Page 30]

DRAFT KIP AppleTalk/IP Gateway July 1993

8.3.1.2. functions

ipgpAssign 1 Assign new IP address
ipgpName 2 Name lookup
ipgpServer 3 Return just server addresses
ipgpRange 4 Return start address and range
ipgpVerify 5 Verify this IP address is mine

Only ipgpAssign and ipgpServer have ever been implemented by KIP. If an
error occurs processing an IPGP packet, KIP sets op to -1 (all ones), and returns a
zero terminated error message in the string field. The string bad op is returned
if the op field is not either ipgpAssign or ipgpServer.

8.3.1.3. ipgp Assign function

The ipgpAssign function attempts to allocate an available dynamic IP address
using the following criteria (in descending preference);

(1)The lowest IP address for which the saved DDP address associated with the dynamic
IP address matches the DDP source address of the ipgpAssign packet.

(2)The highest IP address entry that has never been used (ie; timer is zero).

(3)The oldest entry which is more than five minutes old.

(4)If no entry has been idle (failed address confirmation) more than five times, then
address assignment fails, and the packet is returned with op set to -1 and string
is set to no free address.

If an address is successfully (re)assigned it will be returned in the ipaddress field
of the IPGP packet, the client DDP address is saved in the dynamic client table, and
the entry timer is set to one. The IPGP op field is returned unmodified. The
ipname, ipbroad, ipfile and ipother fields are filled in with data received
from the AA host via an aaROUTEI packet.

8.3.1.4. ipgp Server function

The ipgpServer function returns the auxiliary data fields returned by
ipgpAssign but without assigning an address. This function can be used by ‘‘static’’
clients.

8.3.2. reboot and address confirmation

KIP sends NBP LkUp packets to locate and confirm users of dynamic IP address
slots.

Budne Expires December 31, 1993 [Page 31]

DRAFT KIP AppleTalk/IP Gateway July 1993

To provide robustness in case of gateway failure KIP will attempt to (re)acquire the
address associations in use before the gateway restarted. After configuration is
complete KIP waits 25 seconds (to allow RTMP routes to be established) and it
sends out wildcard NBP LkUp packets for type IPADDRESS in the zone associated
with it’s LocalTalk once a second for five seconds. Incoming NBP packets with type
IPADDRESS are passed (as usual) to both NBP ARP input processing and Dynamic
IP Address confirm processing. This reloads the Dynamic IP Address table with all
active users (within the local zone).

Once KIP has been running for 30 seconds, KIP attempts to ‘‘confirm’’ the NBP
IPADDRESS associated with each dynamic IP address ‘‘slot’’ once a minute. Since a
maximum of 60 dynamic addresses may be allocated by KIP, each entry is confirmed
on the same ‘‘tick’’ of the second hand, spreading the NBP traffic out. If the aging
timer associated with an entry is zero (an unused entry) or has reached 32767 no
confirm is sent.

The confirm packet is an NBP LkUp packet (with type object = and zone *) sent
directly to the to the DDP address found in the dynamic IP address table.

Upon receipt of an NBP reply for an IPADDRESS in the dynamic range the address
confirmation code saves the replying entity’s DDP address in the dynamic client
table, and resets the entry timer to one.

9. KIP revision history

Below is an edited revision history for KIP.

9.1. 10/86

Improved IP address management (IPGP + NBP ARP). Centralized configuration
and boot control. Full AppleTalk routing using NBP/RTMP/ZIP; ‘‘core’’ gateway
scheme. Gateway debugging via net ddt. Simple integration with libraries such as
CAP/K-HOST. Improved packet throughput. (Croft)

9.2. 02/87

Bug fixes. (Croft)

9.3. 09/87

Implement zones (aaZONE) and zone filtering. (Croft and Kim)

9.4. 01/88

Ethertalk support. Magic zone name ALL. ATP ZIP support rewritten. DDP Echo
support. atalkad configuration aids. (Kim and Tappan)

Budne Expires December 31, 1993 [Page 32]

DRAFT KIP AppleTalk/IP Gateway July 1993

9.5. 06/88

Support for NIC UDP port range. Zone acquisitions are done on RTMP routes.
EtherTalk fixes. Allzones was on for ‘‘unknown’’ zones. (Kim)

10. NIC Assigned UDP ports

The following UDP ports were assigned for UDP/DDP encapsulation in April of 1988
[RFC-1060].

Port NIC Name Useii
201 AT-RMTP AppleTalk Routing Maintenance
202 AT-NBP AppleTalk Name Binding
203 AT-3 AppleTalk Unused
204 AT-ECHO AppleTalk Echo
205 AT-5 AppleTalk Unused
206 AT-ZIS AppleTalk Zone Information
207 AT-7 AppleTalk Unused
208 AT-8 AppleTalk Unused

In regular operation RTMP and ZIP are never sent in UDP/DDP packets. The CAP
getzones command sends ZIP GetZoneList packets to KIP, but KIP always
sends ZIP Query commands in aaZONEQ packets to it’s AA host and other Kboxes.
The NBP and ECHO are ports are served by atis on CAP hosts.

11. Non-NIC Assigned UDP ports:

The following ports are used by KIP, CAP or work-alikes, but have not been assigned
by the Internet Assigned Numbers Authority;

Port(s) Name Useiii
750 aaBroadPort Async Appletalk broadcast
768-895 ddpWKSUnix Old DDP Well-Known socket range
899 FastPath KLAP3 over UDP
900 gwdbPort Gateway Debug Protocol
901 aaPort AA Protocol
902 rebPort UDP/DDP Rebroadcast
903 mrebPort UAB mKIP Rebroadcast
910 RTMP Point-to-Point
16512-16639 ddpNWKSUnix Non-Well-Known DDP Socket range
43520 aaBasePort Async Appletalk base port

Budne Expires December 31, 1993 [Page 33]

DRAFT KIP AppleTalk/IP Gateway July 1993

12. Programmer’s Reference:

The following are the ‘C’ data structure declarations used by KIP for packets
described in this memo;

Note:
All data is in ‘‘network’’ (native 68000) byte order.

AppleTalk administration packets from AppleTalk administrator host (AA) or other
gateways; configuration / routing information packet.

struct aaconf {

u_long magic; /* magic number aaMagic */

u_char type; /* op code */

u_char flags;

u_short count; /* byte count of ’stuff’ */

iaddr_t ipaddr /* IP address of sender */

u_char stuff[512]; /* config info or route tuples */

};

#define aaconfMinSize 12

#define aaPort 901 /* udp port number */

#define aaMagic ((u_long)0xFF068030)

Routing tuple contained in all aaROUTE* packets;

struct arouteTuple {

long node; /* IP net or host address */

u_short net; /* atalk net number */

u_char flags; /* flags, see aroute */

u_char hops; /* hop count */

};

Budne Expires December 31, 1993 [Page 34]

DRAFT KIP AppleTalk/IP Gateway July 1993

Configuration information from aaCONF packet;

struct conf {

iaddr_t ipbroad; /* IP broadcast addr */

iaddr_t ipname; /* address of name server */

iaddr_t ipdebug; /* address of debug host */

iaddr_t ipfile; /* address of file server */

u_long ipother[4]; /* other addresses for IPGP */

u_short anetet; /* EtherTalk AT net # */

u_short startddpWKS; /* UDP WKS range start */

u_long flags; /* various bit flags */

#define conf_stayinzone 0x1 /* no looking at other zones */

#define conf_laserfilter 0x2 /* NBP filter LaserWriters */

#define conf_tildefilter 0x4 /* NBP filter "name˜" */

u_short ipstatic; /* static IP addrs */

u_short ipdynamic; /* dynamic IP addrs */

u_short atneta; /* LocalTalk AT net # */

u_short atnete; /* UDP/DDP AT net # */

u_char spare[16]; /* was once zone info */

};

Gateway debug protocol (via ddt68 on UN*X);

struct gwdb {

u_long magic; /* magic number gwdbMagic */

u_char op,seq; /* op code, sequence number */

u_short count; /* byte count */

u_long address; /* address of read/write */

u_char data[512];

};

#define gwdbMagic ((u_long)0xFF068020)

#define gwdbPort 900 /* udp port number */

/* op codes */

#define gwdbRead 1

#define gwdbWrite 2

#define gwdbCall 3

Budne Expires December 31, 1993 [Page 35]

DRAFT KIP AppleTalk/IP Gateway July 1993

IPGATEWAY protocol ATP packet used by client MacIP programs to request name
assignment and lookup services.

struct IPGP {

u_long op; /* opcode */

long ipaddress; /* my IP address (or lookup reply)*/

long ipname; /* address of my name server */

long ipbroad; /* my broadcast address */

long ipfile; /* my file server */

long ipother[4]; /* other addresses/flags */

char string[128]; /* null terminated error string */

};

#define ipgpMinSize 36

/* op codes */

#define ipgpAssign 1 /* assign new IP address */

#define ipgpName 2 /* name lookup */

#define ipgpServer 3 /* just return my server addresses */

#define ipgpRange 4 /* return start address and range */

#define ipgpVerify 5 /* verify this IP address is mine */

#define ipgpError -1 /* error return; string=message */

13. Author’s Note:

Portions of this document were copied from KIP source files covered by the following
copyrights:

 1984, Stanford Univ. SUMEX project.
May be used but not sold without permission.

 1986, Kinetics, Inc.
May be used but not sold without permission.

 1986, Stanford, BBN, Kinetics.
May be used but not sold without permission.

 1986, Stanford Univ. CSLI.
May be used but not sold without permission.

 1986, Stanford Univ. SUMEX project.
May be used but not sold without permission.

Budne Expires December 31, 1993 [Page 36]

DRAFT KIP AppleTalk/IP Gateway July 1993

The following are trademarks;

AppleTalk, EtherTalk, LaserWriter, and LocalTalk are
trademarks of Apple Computer, Inc.

FastPath is a registered trademark of Novell
licensed for use exclusively by Shiva Corporation.

K-STAR is a trademark of Novell
licensed for use exclusively by Shiva Corporation.

Kinetics is a registered trademark of Novell.

Mac and Macintosh are registered trademarks of
Apple Computer, Inc.

UN*X is not a trademark of anyone.

14. References:

[RFC-768]
Postel, J.B., ‘‘User Datagram Protocol’’, Information Sciences Institute, University of
Southern California, August 1980.

[RFC-791]
Postel, J.B., ‘‘Internet Protocol’’, Information Sciences Institute, University of
Southern California, September 1981.

[RFC-826]
Plummer, D.C. ‘‘Ethernet Address Resolution Protocol’’, November 1982.

[RFC-1060]
Reynolds, J., and J. Postel, ‘‘Assigned Numbers’’, Information Sciences Institute,
University of Southern California, March 1990.

[Sherman86]
Sherman, M. ‘‘A Network Package for the Macintosh using the DoD Internet
Protocols’’, Technical Report PCS-TR86-124, Computer Network Laboratory,
Department of Mathematics and Computer Science, Dartmouth College.

[Sidhu90]
Sidhu, G., R. Andrews and A. Oppenheimer, ‘‘Inside AppleTalk, Second Edition’’,

Budne Expires December 31, 1993 [Page 37]

DRAFT KIP AppleTalk/IP Gateway July 1993

Apple Computer, Inc. May 1990.

15. Acknowledgments:

The author is indebted to the following for their help, input and documentation; Scot
Drysdale of Dartmouth University, Robert Elz of the University of Melbourne, Tom
Evans of Webster Computer, David Hornsby of the University of Melbourne, Charlie
Kim of Apple (formerly at Columbia University), Philip Koch of Dartmouth University
(now at Apple Computer), Stephen Lewis (formerly of Kinetics), Josh Littlefield of
Cayman, John Norstad of North Western University, Brad Parker of Cayman, Mark
Sherman of Transarc (formerly at Dartmouth), Michael Swan of Neon Software
(formerly of Kinetics), Dan Tappan (formerly at BB&N), and Jim Warner of UCSD.

And particularly Bill Croft (now at the Institute for Global Communication) not only for
having created SEAGate and KIP, but for his time spent digging up old
documentation, and reviewing this document!

16. Author’s Address:
Philip Budne
Shiva Corporation
1 Cambridge Center
Cambridge, MA 02142

Phone: 617-252-6300
EMail: phil@Shiva.COM

17. Expiration:

This draft document expires December 31, 1993.

Budne Expires December 31, 1993 [Page 38]

